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1 Introduction

In this paper we present a parallel algorithin for computing the minimum
spanning forest of a graph on a fat-tree architecture. That is, given graph
= (V, E) where the edges in E are weighted, we want to find a set of
edges forming a minimum spanning tree for cach connected component. We
will analyze the running time not only in terms of |V| and |E|, but also in
terms of how cfliciently the graph has been embedded in the fat-tree.

Parallel algorithms for computing the connected components or the min-
imum spanning forest of an input graph have been presented for numerous
parallel architectures {AS, B, H, IICS, KR, SV]. Awerbuch and Shiloach,
for example, have presented a minimum spanning forest algorithm with
running time O(log|V{) [AS]. Their algorithm is intended for a PRAM
(Parallel Random Access Memory) model with CRCW (Concurrent Read
and Concurrent Write) capabilities. Each of the [E|+|V| processors in this
model has access to every word of a shared memory. While this model is
very powerful, the connectivity required to build such a shared memory is so
high that it may be impractical except on a small scale. Other authors have
presented minimum spanning tree algorithms for less highly connected but
also less general architectures. In particular, Bentley has presented a mini-
mum spanning tree algorithm for a specialized trce architecture containing
[V | processors [B]. Bentley's algorithm has running time O(,V|log V). In
this paper we present a minimum spanning forest algorithmn for a new class
of universal routing networks introduced in [L] called fat-trees.

Leiserson has shown that under the assumption that only O{A) bits may
enter or leave a region It with surface arca A in unit time, fat-trces have
the following nniversality property: given any routing nctwork R consisting
of some fixed amount of hardware (a set P of processing clements wired
together in volume V'), there exists a fat-tree built with the same amount
of hardware that can simulate the original network at a cost of a factor of
O(log® |P}) in time. Thus for a given amount of hardware, a fat-tree can in
theory be used solve a problem, such as computing the minimuin spanning
forest of a graph, in almost optimal time. Leiserson's theorem indicates
that fat-trecs are a powerful class of routing networks. His paper, however,
explains only how to simulate other routing networks and says nothing
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about how to design cflicient algorithms specifically for the fat-tree. In this
paper we describe new data structures and techniques that may be useful
in future fat-tree algorithms.

We also introduce a new parameter to the running times of parallel
algorithms. The running times of sequential and parallel algorithms are
typically parameterized by the size of the input. For example, the two
parallel algorithms mentioned above have running times parameterized by
the number of vertices and edges in the input graph G. The new parameter,
which we will call the base load factor of G, §(G), is a mecasure of the
communication congestion that occurs when some primitive operation is
performed in parallel on the input data. We will embed each vertex v €
G in a diflerent processor and our primitive opcration will be for each
vertex to simultancously pass a message to each neighboring vertex. In
this algorithm, the communication congestion of every message set, and
consequently of the entire algorithm can be expressed in terms of §(G).

The remainder of this paper is organized in the following manner. In
section 2 we define a fat-tree architecture and the concepts of message sets
and their load factors. In the sections 3 and 4 we describe the message set
routing results of Leiserson and Greenberg |[LG] and prove a short lemma
extending these results. In scction 5 we describe the parallel minimum
spanning forest aigorithm that we arc going to implement. Our imple-
mentation requires the auxilliary data structures and subalgorithms that
are described in section 6. Following these descriptions, we present our
minimum spanning forest algorithm in section 7. In sections 8 and 9
we present three more subalgorithms of the minimum spanuing forest al-
gorithm. Section 10 is an analysis of the running time of the algorithm.
A message set synchronization scheme using the ideas of this paper is de-
scribed in section 11. We conclude with a few comments on future [at-tree
research.

2 Fat-Trees

A fat-trce is depicted in Figure 1. The underlying structurc of a fat-
tree is a complete binary trece. The leaves of the binary tree are processor
elements, the internal nodes are switches, and the edges are communication




channels. In general, the capacitics of the communication channels increase
as the tree is traversed from the leaves to the root. More formally, a fat-
tree is an ordered triple FT = (P, N,C) where P is the set of processors
found at the leaves, N is the set of switches found at the internal nodes,
and C is the set of channels found at the edges. We let cap(c) denote the
capacity of a channel ¢ € C, that is, the number of messages that may be
simultaneously sent through c. In the fat-trees that we will consider, the
channels are unidirectional and paired. That is, for each channel going up
the fat-tree there is a corresponding channel with the same capacity going
down the fat-tree. Each processor p has a unique address in the fat-tree,
I{p). In Figure 1, for example, {(p,) is 010. We assume that each processor
has a copy of its own address.

Definition 1 A message set M C P x P 1s a set of messages where
(p1,p2) € M s a message from processor p; to processor p,.

Because the underlying structure of a fat-tree is a tree, message (py,pa)
must traverse the unique path from p; to pa in FT.

Definition 2 Let load(M,c) be the number of messages in message set M
that must traverse channelc € C.

Definition 3 M s called a one-cycle message set if for allc € C,
load(M,c) < cap(c).

Because none of the channel capacities are excceded, all of the messages
in a one-cycle message set can be delivered in one message delivery cycle.

Definition 4 The load factor, A(M,c), of a channel ¢ € C due to a mes-
sage set M is

AMM,c) = ldia

cap(e)

Definition 5 The load factor of FT due to M, A(M), is

A(M) = max. ¢ A(M,c).
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Figure 1: A Fat-tree Architecture




3 Routing Message Sets '

Figure 2 shows an input graph G embedded in a fat-tree FT. In this figure,
the channel capacities of FT and the edge weights of G have been omitted
for clarity. Each vertex v € G is assigned to its own processor, ¢(v). Where
the context removes any ambiguity we will, for simplicity, let v denote ¢(v)
and the address of ¢(v), [(¢(v). Let v have neighbors v,,v;,...,9; in G. In
processor ¢(v) we store the adjacency list of v, (v, w,), (v2, wa), ..., (v&, wk),
where w, denotes the weight of the edge connecting v and v;. In this ex-
ample, v; has been embedded in processor p;. In p, we store the adjacency ‘
list (010,1),(100,2), (110,2) (111,2). -
Let G' be the graph that results when each edge in G is replaced by
two oppositely directed edges. In general we will use the symbol ' to de-
note the operation of replacing each edge of an undirected graph with two
oppositely directed edges. Let M be the message set that arises when
each vertex in G' sends a message to each of its neighbors. We will use this
primitive operation to determine the base load factor of the input graph G.
Leiserson and Greenberg have shown LG, that an arbitrary messaqe set
M can be broken up into one-cycle message sets on-line and can, witn high
probability, be routed in O(A(M) + log | P! log log | P|) delivery cycles. This
on-line routine algorithm assumes the existence of a hardware mechanism
to synchronize the sending of messages by the processors in P. In a later
section we will show how message set synchronization can be accomplished
with no dedicated hardware other than increased channel capacities. Us-
ing either synchronization scheme, a message set M will still, with high
probability, be delivered in O(A(M) + log |P|log log | P|) delivery cycles.
The choice of a particular on-line message set routing algorithm is not
important to the understanding of the minimum spanning tree algorithm.
Throughout the paper we will assume that we have some mechanism for
synchronizing message sets and delivery cycles within those message sets,
and for dcciding which messages belong in which delivery cycles. We assume
that each processor knows when the routing of a message set M begins and
ends, and when each delivery cycle used to route M has begins and ends.
If we use the algorithm of Leiserson, and Greenberg, we can send Mg in
O(A(Mg') + log |P}loglog |P|) delivery cycles. We define 5(G), e base
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load factor of G, to be A(M;) + log P loglog P. We will analyze the
number of delivery cycles used by the algorithm in terms of 3(G) and |V|.

In the literature, graph algorithms in which vertices are allowed to com-
municate only with their neighbors are called “distributed”. In such algo-
rithms a message from one vertex to another may have to pass through
O( V') intermediate vertices. Although we embed each vertex in its own
processor, our MSF algorithm is not in this sense distributed. We may pass
a message from v, to va even when they are not neighbors in G.

K

4 The Shortcut Lemma

Figure 3 shows a message set M, in which processor p, sends a message
to p» and p, sends a message to p;. The following lemma shows that we
may replace these two messages in M, with a message directly from p; to
p; without increasing the load factor of M.

Lemma 1 The Shortcut Lemma

Let p;, p», and p3, be leaves of a fat tree. Suppose p; is sending a
message to p» and p» is sending a message to p; in message set My. Then
the load factor of the message set that results when these two messages are
replaced by a message directly from p,; to p;, ‘

M = (Myu{(p1,p)}) — {(p1:p2), (P2, p3) },

is not greater than the load factor of the original message set M. That is,
AM) < A My).

Proof: 1t will suffice to show that load(M,c) < load(My,¢) for each ¢ € C,
since by definition A(My,¢) = ]""c‘—:‘xz")il Since the underlying structure
of FT is a tree, and a tree cannot contain any simple cycles, the paths
py — p» and p» — p; must contain the unique simple path p; — ps.
Therefore message (p;, p;) passes through a channel ¢ only if either (p;,p2)
or (pa,p3) does also. [

The Shortcut Lemma can be extended to show that we can replace any
subset of M, that forms a path of messages from p; to py with a single

message directly from p; to py.

[ AR
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Figure 2: Embedding a Grapli in a Fat-tree 2
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Corollary 1 Eztended Shortcut Lemma

Wt vt ot - -

Let (py,p2), (P2, P3), - (PN 1,PN) € My. Suppose we replace messages
(p1,p2) through (py 1,pn) with a single message (p;,py) in message set

- M That’ i51 ICt' M = (M(l U {(phpN)}) - {(Phpz),(P'z,Pa),---,(PN.-hPN)}-
l Then the load factor of M will not be greater than the load factor for M,,.

AM) < A(My)

. Proof: The proof is by induction on N.[]

In general, we will pass a message from v; to va in the minimum spanning
forest algorithm only if there is a path in G’ from v; to va. Furthermore,
in any set of messages (v;,v;) that we send, there is some set of paths
from the v, to the v; such that no edge in E' is traversed more than once.
In Figure 4 this paradigm has becen violated. We can remove message
(p1,p2) to shortcut (py,p2), (P2, P3), but cannot remove it again to shortcut
(p1,p2), (P2, Ps). However, if we follow this paradigm then by the Extended
Shortcut Lemma the load factor of every message set will be less than or
equal to A(M¢) and therefore will, with high probability be delivered in
B(G) or fewer delivery cycles.

o,
:

5 Sollin’s Algorithm

Our minimum spanning forest algorithm is an implementation of the fol-
lowing parallel algorithm attributed to Sollin in [GH]. We want to find a
set of edges, Er, that forms a minimum spanning trce for each connected
component of G. At each stage of the algorithm, let T}, T3, ..., T; denote the
subtrees forimed by the edges in Ey.

Algorithm 1 Sollin’s Algorithm

Each vertex v, is an isolated subtree T; of G.

WHILE there are cdges not in Er connccting the T; DO

.......
..............
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Simultancously select, for each subtrce T;, the edge of smallest
weight connecting a vertex u € T, with a vertex v € T,i#3; If
there is more than one edge with the same smallest weight, break
ties by giving each edge u—v a label k(e) = (max(u,v), min(u,v))
and choosing the edge with the smallest label. Add the selected
edge to Er.

In each iteration of Sollin’s algorithm we want to quickly gather in-
formation about all of the edges adjacent to a subtree. In the following
section we explain how to build a “communication tree” for each subtree T,
through which we can quickly gather this information. The technique we
use is reminiscent of the Euler Tour Technique introduced by Tarjan and
Vishkin in [TV]. We will compute the Euler tour of each subtree and from
this tour build a communication cfficient communication tree.

6 Communication Trees

6.1 Euler Cycles of Trees

Let T; = (V;,E;) be a tree where V; C V and E; C E. Let T} = (V,, E)
be the directed graph that results when cach edge in E, is replaced with 2
oppositely directed edges in Ej. Clearly T} is connected and the in-degree
and out-degrce of each vertex in T are equal. An clementary result of
graph theory is that in any directed graph where for each vertex the in-
degree and out-degree are equal there exists a directed Euler cycle {E]. Let
C/ be a directed Euler cycle of T}.

A typical step in our minimum spanning forest algorithm is to merge
the dirccted Euler cycles of two vertex disjoint trees T, = (V,,E,) and
T, = (V\, E,) connccted by an edge e between vertices u; € V, and v; € V,
to form the larger directed Euler cycle of T, = (V,UV,,E,UE, U {e}) Let
u.-e—"»vj and v,-’—"»u,- be two oppositely directed edges between the endpoints
of e and let C, and C, be dirccted Euler cycles of T and T..

C, = Yoy — Uy > ..U =Y DU — .. — U
C, = Y=y m U= DU =V~ 0 = ...y

10
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Figure 5 illustrates the process of merging C,, and C, to form the larger
dirccted Euler cycle of the tree T),, = (V, U V., E, U E, U {e;,e;:}) Cycles
C. and C, are broken apart at vertices u; and v;, and then merged by
connecting u, and v; with edges e;; and ej;;. The resulting cycle,

Ci, = Up— ..U | > U DVE; SV — ...

=Y .V Y UGG U e Y

is a directed LEuler cycle of T,,,.

Throughout the execution of the algorithm we will maintain a set of
subtrees of G, {T\,T»,...,Ti}, and a set of directed Euler cycles of those
trees {C},C,...,Ci}. LEach vertex v € V will belong to exactly onc tree
T: and to the Euler cycle C! of T!. We will repeatedly merge the 7; and
their directed Euler cycles, the C; by adding connecting edges. When the
algorithm terminates, the condition u,v € V, <= u,v€ C] < u,vin
same connected component of G will be satisfied.

6.2 Building Communication Trees

In describing the following communication tree construction algorithm, we
will consider only one of the subtrees of G, T,. The algorithm, however,
runs simultancously on all of the subtrees formed by the cdges in Er with
no conimunication or interference between them.

The communication tree construction algorithm requires a subroutine
that pairs vertices in a cycle. In a later section we will describe two algo-
rithms that perform this pairing, one deterministic, and the other proba-
bilistic.

We build a communication tree from the bottom up by repeatedly merg-
ing subtrees of the communication tree to form larger subtrees. We keep
the roots of the subtrees in a cycle in the order that they appear in the
cycle C' and pick pairs of them to merge. When the mergers are complete
we construct a new cycle of subtree roots by removing the vertices that are
no longer roots.

In Figure 6 we show the how a pair of subtrees are merged. When we
merge two subtrees we want the inorder traversal of the resulting subtree to
be the same as the concatenation of the inorder traversals of the merging

1
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Figure 5: Merging Directed Euler Cycles




subtrees. We do this by making the rightmost leaf of the left subtree
the root of the resulting subtree. The left and right roots of the merging
subtrees then become the left and right children of the new root. In the
inorder traversal of the final communication tree, the nodes appear in the
same order that they appear in C'.

In Figure 7 we show a cycle of subtree roots before the mergers have
taken place. The circled pairs of vertices are the roots of the subtrecs
that will merge. In Figure 8 we show the cycle of subtree roots after the
mergers have occurred. In each merge, the rightmost leaf of the left subtree
has become the new root.

Algorithm 2 Communication Tree Construction Algorithm

Let R’ denote a cycle of the roots of the subtrees of communication
tree CT after 7 iterations of the communication trce construction
algorithm. Let T} denote a subtree of CT with root r; and rightmost
leaf l; after 7 iterations of the algorithm.

Initially, 7 = 0 and R" = C'.
WHILE R’ contains more than one root DO

IF R’ contains only two subtree roots, r; and r}

TIIEN

Let the vertex with the smaller label, r§ or r} be consid-
ered the vertex on the left.

ELSE
Use cither the deterministic or the probabilistic pairing
algorithm to pair off roots in R'.
For each ordered pair of roots (r},})
1. Let T};! be the union of T} and Tj.
2. Remove from T};' the edge connecting {} to his father.

(a) r} sends I} a message indicating that [} is to become a
subtree root.

13




(b) & sends his father a message indicating that he is no
. longer a leaf

3. Make 7} the left child of l;
. Make r} the right child of I}
(a) } sends r} a message containing the identity of I}

-e
-8

(b) ri sends I; a message containing the identity of r}
5. Let r;":l =l.
6. Let I}y! =13,
() r}i sends I} a message containing the identity of I}
7. Let R**!' = R i
8. Replace r;- and r} in R*'! with l;
(a) i sends I} a message containing the identity of 7i's right
neighbor

(b) r; sends his left neighbor a message containing the in-
dentity of I

In Figure 9 a communication tree is constructed for a subtree containing
5 vertices. In the first iteration, three pairs, (a,b), (c,d), and (e, f) are L
formed. The roots on the left, a, ¢, and e become the roots of the subtrees
after the mergers, and b, d, and f are removed from the cycle of subtree
roots. In the second iteration, ¢ and e pair. Note how the rightmost leaf
of ¢’s subtree, d, becomes the root of the subtree resulting from the merge.
Now only two subtree roots are left, @ and d. Assuming that a has a smaller
label than d, the final subtree, communication tree, has b as its root. A
quick look at the communication tree reveals that in its inorder traversal,
the vertices are visited in the same order that they appcar in C'.

6.3 Communication tree Broadcasting Algorithm

Our motivation for building a communication tree CT is to provide a way to
quickly gather information from and pass information to all of the vertices
in a subtrce. We can use the following algorithmn to broadcast a message
from the root of CT to all of the vertices in CT. The same algorithin can
be run in reverse, with each internal node forwarding to his father only one
of the messages that hie receives from his children.

14




¥
P

o

'—4‘"—""""

Algorithm 3 Communication Tree Broadcasting Algorithm

A message is passed down from the root to all of the nodes in com-
munication tree CT one level at a time. The message is first simul-
taneously sent from the root of CT to his left child, and then to his
right child. When all of his children have received the message, they
forward it to their left children, and then to their right children. The
process is repeated until the leaves of CT have received the message.

7 Minimum Spanning Forest Algorithm

We can efliciently implement Sollin’s algorithm by using a communication
tree to coordinate communication between the vertices in each subtree in
Er. Recall that the principle step in Sollin’s algorithm is to choose for each
subtree T;, the edge of smallest weight connecting a vertex u € T; with a
vertex v € T}, © # 7. In our implementation, each vertex u € T; sends his
neighbors in G the label of the root of C1,. He then chooses the lightest edge
connecting him to a vertex in another communication tree CT;, breaking
ties lexicographically as described beforc. These potential merging edges
arc then passed up CT,, which is used as a decision tree, allowing only the
lightest of the edges reaching each internal node to progress up the tree
(again we may have to break ties lexicographically). The unique lightest
edge reaching the root is used to merge the two trees that it connects, T;
and Tj. If no edge reaches the root, then T, is a minimum spanning tree
for a connected component of G, and the vertices in that component may
become idle.

After each merger occurs, a new communication tree CT is constructed
from the combined cycles C] and Cj, C,;, and the root of CT informs the
vertices in Tj; of his identity.

Note that scveral trees may choose to merge with T;, with posslbly more
than one of them wishing to break C] at a single vertex u. We will show
how to implement directed Euler cycles so that an arbitrary number of
cycles can be cfficiently merged at u.

15
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Algorithm 4 Minimum Spanning Forest

E1-=(0

Each vertex u; is active and is an isolated subtree, 7.

Y R

WHILE there are active vertices DO

1. Ench vertex u sends the label of the root of his communication

trce to his ncighbors in G.

l 2. Each vertex u determines which edge adjacent to a different tree
» . . [ 4

- has the smallest weight. In the case of a tie, each edge u—v

is given a label k(e) = (max{u, v), min(u,v)) and the edge with
the smallest label is chosen.

3. Each vertex u at the leafl of a communication tree passes the edge
of smallest weight that reaches him to his father in the commu-
nication trec. The communication tree is used as a decision tree,
allowing only the smallest edge reaching cach internal vertex to
pass.

4. The root of cach communication tree CT broadcasts the merging
edge to all of the vertices in CT'. If no edge has reached the root,
then the minimum spanning tree of this connected component
has been found. In this case, the root of C1' broadeasts a halt
instruction.

[
5. For each merging edge u—v,u € T,,v € T}, merge C; and C;.
6. For cach directed cycle, build a new communication trce,

7. The new root of cach communication tree broadcasts his label.

In Figures 10 through 13 we show a sample exccution of the MSF
algorithm. As Figure 10 shows, the input graph G contains four vertices,
cach of which has two neighbors. Initially each vertex v; is an isolated tree
T, and the set of mininwm spanning forest edges, foy, is empty.

In Figure 11 we show the choices of merging ediges made by the v; in
the first iteration. Bach vertex chooses the lightest edge connecting him

13




to a vertex in a different subtree. As the figure shows, vy chooses e3, vy
chooses e, va chooses e3, and v3 chooses e;. Note that v3 must break a tie
between edges e; and e, lexicographically.

At this point each vertex v; is the sole vertex of a trce T, so the edge
that v; picks becomes the merging edge for T;. In Figure 12 we show the
cycle C' constructed from edges ¢, e;, and e;. In this example one cycle
contains all of the vertices in V. For clarity, we have chosen to label the
appearances of the v, in C' a, b, ¢, d, e, and f.

In figure 13 we show the communication tree CT constructed from
the cycle C'. This tree is exactly that of Figure 9. At the erd of the first
iteration, b sends all of the vertices in CT his label. Since all of the vertices
in V are contained in CT, in the second iteration no vertex finds that he
is adjacent to a vertex in any other communication tree and b broadcasts
a halt instruction.

8 Implementation of Directed Euler Cycles

Let T, be a subtrce of G with directed Euler cycle C;,. We want to main-
tain the cycle C! by storing information at the vertices that appear on the
C.. We also want to quickly merge two cycles, C., and C, by adding two
oppositely dircct edges between a vertex u; € V, and v; € V,. Thus for
cach edge e € E! adjacent to u,, we store out, (¢), the cdge to traverse out
from u; after e is traversed in to u;. In order to merge two cycles C, and
C! by adding edges e,; and ej; with endpoints u; € V, and v, € V, we pick
an edge ¢’ € E, adjacent to u; and an edge €" € E, adjacent to v, perform
the following operations:

out, (e;) := outy/(e')
out, (e') €
out, (e;) := out, (")
out, (") = ¢

ii

These operations are illustrated in Figure 14.
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Figure 10: Input Graph G

Figure 11: Merging Tdges
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“Figure 13: Communication Tree
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Figure 14: Cycle Merging Operations
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9 Pairing Algorithms

Let C; be the directed Luler cycle of tree T;. A vertex v may appear more
. than once in such a cycle. Suppose vertex v, appears after vertex v;_; in
| C!. We can give v the label k(v) = (v, 1,v,). No other vertex can have the
sante label, because the cycle is Eulerian. For simplicity, we shall speak
of each of these uniquely labelled appearances of v as if they we different

vertices in C;. We may use the either of the following algorithms to pair
the vertices in C.

'! T

9.1 Deterministic Pairing -Algorithm

Algorithm 5 Deterministic Pairing

Let k(v,), be bit j of the binary encoding of k(v;).

- v
—— r—wr7

For each active vertex v;, perform the following operations synchronously.

Vertex v; becomes active.

FOR | := low order bit position of k(v) to high order bit position of
k(v) DO
IF k(v,); =1 and k(v;,4)1 =0
THEN
Let u = v; .
Send a message to u.
IF l{v,), = 0 and {(vg-y); is 1
THEN
Let u =v,_;.
Send a message to u.
IF v, reccived a message from a vertex u

TIEN

v, pairs with u and becomes in active

23
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Active vertices repeat the process above for 0 — 1 transitions.

=y

In this algorithin we alternate sending messages sets consisting of mes-
sages only to right neighbors in C] and only to left neighbors. At no point
do we intersperse messages to left and right neighbors.

In Figures 15 and 16 we show the execution of the deterministic pairing
algorithm on a cycle of length 6. Recall that the same vertex may appear
more than once on a cycle, but that each appearance is given a unique
label. In Figure 15 the binary representation of the unigue label of each
vertex appearance is listed below that appearance.

As Figure 16 shows, two pairs are formed when 1 — 0 transitions are
examined. The first such transition occurs in the low order bit position
from vertex v (appearance (3,1)) to vertex v, (appearance (1,0)). The
second pair is found when the transition between vy (appearance (0,2))
and v, (appearance (2,0)) in the next bit position is examined. A third
pair is found by examining the 0 — 1 transitions. Note that several 1 — 0
and 0 — 1 transitions are ignored because by the time they are examined,
one or both of the vertices involved have already paired.

-
(5
o

-

9.2 Probabilistic Pairing Algorithm

As we will later show, the deterministic pairing algorithm has the disad-
vantage that it requires O(log |V|) iterations in which very sparse message
sets are generated. While the following probabilistic pairing algorithm is
not quaranteed to pair a constant fraction of the vertices in cycle C' we
will show that using the probabilistic pairing algorithm the communication
tree construction algorithm will, with high probability, take the same order
of iterations as when the deterministic algorithm is used. The algorithm
assumes that a processor has the capability of making a random choice.
Recall that this capability is alrcady required by our probabilistic on-line
routing algorithm.

Algorithm 6 Probabilistic Pairing

Let v; appear on cycle C' between vertices v; _; and vi, .
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For each vertex v; perform the following operations synchronously.
Randomly pick v;-; or v;,; to send a message to. Call this vertex u.
IF u =v,,,
THEN
Send a message to u.
IFu=v;,
THEN
Send a message to u. -
IF v; received a message from u

THEN

v, pairs with u and becomes inactive

10 Analysis

10.1 Deterministic Pairing

Lemma 2 The deterministic pairing algorithms pairs at least § of the ver-
tices 1n the cycle C'.

Proof: The label of every vertex v;, k(v;) must differ with each of k(v,_,)
and k(v;,,) in at least one bit position [. If the transition from k(v; ),
to k(v;)i is 1 — 0, then either there is a 0 — 1 transition from k(v;); to
k(vi.1)t or k(v;)1 = k(v;.y);. Since we treat 1 — 0 and 0 — 1 transitions
in separate iteration loops, every bit difference between the labels of two
neighbors is considered individually.

Assume that two neighbors are both unpaired when the algorithm ter-
minates. These two neighbors must differ in at least one bit position. Since
this difference was considered in some iteration, they should have paired
that iteration. Thercfore, no two neighbors can be both unpaired when the
algorithm terminates. At the end of the algorithm, then, a vertex can be
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unpaired only if both of his neighbors paired with other vertices. Thus at
least %" of the vertices in C' are paired when the algorithm terminates. [J

Lemma 3 The deterministic pairing algorithm generates O(log [V|) mes-
sage sets, each of which can be delivered in O(B(G)) delivery cycles.

Proof: We can encode k(v) in O(log [V|) bits. The algorithm, thercfore,
may perform O(log|V|) iterations. '

The algorithm operates on all cycles simultancously. In cach iteration,
two separate message sets are gencrated, one of messages to right neighbors,
My, and one of messages to left neighbors, M;. The messages in one of
these message sets travel in the direction of the edges in the cycles while
the messages in the other travel in the opposite direction.

For every edge e € Er between vertices v; and v;, directed edges ¢;; € E'
and e,; € E' appear once in the cycles of the minimum spanning forest
subtrees. Since we are assuming that the capacities of corresponding up
and down channels in our fat-tree are equal, traversing a directed edge e;;
in reverse is equivalent to traversing ey, and vice versa. Thus each of the
message sets My and My traverse subsets of the edges in E', and can be
delivered in O(B(G)) delivery cycles. [

Lemma 4 Using the deterministic pairing algorithm, the communication
tree construction algorithm produces trees of height O(log |V |).

Proof: In each iteration, g of the remaining subtree roots will be paired by
the pairing algorithm. In each merger both subtree roots become internal
nodes, and the root of the rightmost leaf of the left subtree becomes a
subtree root. Thercfore, the number of subtree roots is reduced by :‘-' in
each iteration. After O(logiV'}) steps, only one root will remain.

As the height of a subtree grows by at most one in each iteration, each
resulting communication tree have height O(log|V]). O

10.2 Probabilistic Pairing

We would like to show that with high probability, the communication trees
constructed using the probabilistic pairing algorithm will have the same
height as those constructed using the deterministic algorithn.
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Whenever two subtrees merge into one subtree, we define the right sub-
trce to be the one that merges and the left subtree to be the one that
remains in the cycle.

Consider subtree roots r; € V; and r;,; € V;,; below. When T; and T;,,
‘ merge, T; is the tree that remains in the cycle.

=T T

s wmmw . v

Lemma 5 In any iteration of the CT construction algorithm, a subtree has
probability % of remaining in the cycle.

Proof: We are assuming that cach vertex chooses to pair with either his
left or right neighbor in the cycle with equal probability and independent
of the choice of any other vertex. A subtreec merges in a given round if
the root of that subtrce chooses his right neighbor, and his right neighbor
chooses him. This probability is computed below.

Pr(v; chooses v;,; and v;.| chooses v,) = Pr(v; chooses v;.) Pr(v;., chooses v;)
1
2

|
=t -

[

A subtrec remains in the cycle whenever it does not merge. This prob-
ability is computed below.

Pr(T,.; remains a subtree) = 1 — Pr(v; chooses v,y and v, ., chooses v;)

1
3
]

O

Lemma 6 The probability that a subtree T; will remain in the cycle of sub-
tree roots after m rounds of the communication tree construclion algorithm
.3

is

4

Proof: We are assuming that the choices made in each itcraﬁon are inde-
pendent of the choices made in any other iteration. Let M] be the event
that subtree T; merges in round j. The probability that T; will merge in
round m is simply % the probability that T; did not merge in any of the
previous m — 1 rounds. That is,
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Let M, be the event that subtree T, merges in one of the first m iterations.
This probability is the sum of a geometric series:

P(M) = {(5r)

= 1 im
A subtree remains in the cycle after m iterations when he does not merge
in any of the first m iterations. Let R, be the event that subtree T; remains
in the cycle after m iterations. The probability that a subtree does not
merge in any of the first m iterations is expresscd below.

P(R) =

1- P(M)
:_;m
4

F . O

Lemma 7 The probability that the communication tree construction algo-
rithm will build any communication tree of height greater than greater than

klog{V| is O(mi=r)-

Proof: As in the previous lenima, let R, be the event that subtree T, remains
in the cycle of subtree roots after m iterations. An clementary thcorem of
probability is that the probability of the union of one or more events is less
than or equal to the sum of the individual probabilities of those cvents.
Applying this relation to the R;, we have

Pl‘(R] URyU...U R‘v.) < P(Rl) + P(Rz) + ..+ P(Rw)

< Vi)™

For m = klog n iterations, we have
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10.3 CT Construction

Lemma 8 Using the deterministic pairing algorithm, the communication
tree construction algorithm generates O(log® |V |) message sets, each of which
can be delivered in O(3(G)) delivery cycles.

Proof: By lemma 4, the communication tree construction algorithm per-
forms O(log [V]) iterations in which the deterministic pairing algorithmn
generates O(log|V|) messages sets. By lemma 3, each of these message
sets can be delivered in O(8(G)) delivery cycles.

In addition to the message sets generated by the pairing algorithm, the
communication tree construction algorithin gencrates a constant number of
messages sets in replacing the left and right subtree roots of each pair with
the rightmost leaf of the left subtree. However, by an argument analogous
to that of lemma 3, each of these message sets can be delivered in O(B8(G))
delivery cycles. O3

o

C

Pl
e

Lemma 9 Using the probabilistic pairing algorithm, the communication
tree construction algorithm generates O(log [V |) message sets, each of which
can be delivered in O(G(G)) delivery cycles.

Proof: The proof is analogous to the proof of lemma 8. We use the fact
that by an argument similar to that of lemma 3, the probabilistic pairing
algorithm generates 2 messages sets, each of which can be delivered in

O(B(G)) delivery cycles. O
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10.4 Communication Tree Broadcasting

Definition 6 The projection of an edge u—v in a communication tree
CT; where u is the father of v is the path u —» v in the directed cycle C!
when v 13 a right child, and the path v — u when v 1s a left child.

Lemma 10 The communication tree broadcasting algorithm generates O(log |V |)
messages sets, each of which can be delivered in B(G) delivery cycles.

Proof: Consider the set of father to right child edges at one level of a

communication tree CT,. The projections of these edges are all paths from

the fathers to their right children. In-an inorder traversal of CT; we visit

the endpoints of these edges from left to right, always visiting a father and

his right child consecutively. As these endpoints appear in C| in the same

order that they appear in the traversal, the projections of these edges are

disjoint. As in lemma 3, we can shortcut these disjoint projections in all

communication trees without increasing the load factor of M. A similar

argument holds for father to left child edges. Thus we can send the left to

, right message set and the right to left message set at each level in O(5(G))

. ¢ delivery cycles.

CT,; has height O(log |V|) so that the communication broadcasting al-

gorithm generates O(log |V |) messages sets, each of which can be delivered

in O(B(G)) delivery cycles. O

10.5 Minimum Spanning Forest ' .

Lemma 11 Using the deterministic pairing algorithm, the minimum span- ]
ning forest algorithm generates O(log® |V'|) message sets, each of which can ]
be delivered in O(B(G)) delivery cycles.

Proof: Sollin’s algorithm performs O(log [V'|) iterations {GH]. Below is an -
analysis of the steps that occur in each iteration of the algorithmn.

1. By definition, the message set gencrated in step 1 can be delivered in
O(B(G)) delivery cycles.

2. No messages arc generated in step 2.
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3. By lemma 10, step 3 gencrates O(log [V'|) message sets, each of which
can be delivered in §(G) delivery cycles.

4. See step 3.
5. See step 1.

6. By lemma 8, step 6 generates O(log® [V|) message sets, each of which
can be delivered in O(8(G)) delivery cycles.

7. See step 3.
O

Lemma 12 Using the probabilistic pairing algorithm, the minimum span-
ning forest algorithm generates O(log® |V'|) message sets, each of which can
be delivered in O(B(G)) delivery cycles.

Proof: The proof is analogous to that of lemma 11 in which by lemma 9
step 6 generates O(log® |V |) message sets, cach of which can be routed in B
O(B(G)) delivery cycles. OO

11 Synchronizing Message Sets

We have previously assumed a hardware synchronization mechanism that
lets each processor know when the routing of each message set is to start
and end, and when each delivery cycle of that message set is to start and
end. With fixed length messages, all delivery cycles require the same fixed
number of clock cycles. Thus if a processor knows when a message set is to
start, he can keep synchronized with each delivery cycle by keeping a local
counter.

We would like to remove the need for a hardware message set synchro-
nization mechanism. The difficulty is that the exact number of delivery
cycles needed to route a message set is not known until all of the mes-
sages in that set have reached their destinations. Furthermore, different
processors will finish sending their messages in different delivery cycles.
However, by computing ofl-line a communication tree that contains all of
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the processors in the fat-tree, we can provide a message set synchroniza-
tion mechanism with no dedicated hardware other than an increase in each
channel capacity of 1. .

In Figure 17 we show the cycle from which we will build the synchro-
nization communication tree. This cycle contains the processors in FT in
the order that they are visited in an inorder traversal of FT'. Figure 18
shows that the the load of each channel due to this cycle is at most 1. Fig-
ure 19 shows the process of building the synchronization communication
tree. This communication tree is computed once ofI-line and never changes.

Using the comniunication tree illustrated in Figure 19, the synchroniza-
tion algorithm is as follows. To start a message set, processor p; broadcasts
a start signal down the communication tree. In this case each of the 2log.|P|
messages sets generated by the communication tree broadcasting algorithm
will require exacty one delivery cycle. When a processor receives a start sig-
nal, he begins sending his messages in M in the next delivery cycle. When
a processor has finished sending all of his messages, he waits for each of
his children in the synchronization communication tree to send him a mes-
sage confirming that they have finished sending their messages, and then

". forwards the message to his father in the synchronization communication
tree.

The synchronization messages will not reduce the probability of any
message in M being successfully transmitted, for although at each concen-
trator switch the number of messages arriving may have increased by 1, the
capacity also increased by 1.

For load(¢) > cap(c) we have the following relation:

/\’(C) = lmd(c!*l

cap(c)~1

load(c)

cap(c)

< Ac)

Thus we have actually decreased the load factor of cach channel.

These synchronization messages may add an additional log |P|+log log | P|
delivery cycles to the number of cycles nceded to route M, for example in
the case when all processors finish sending their messages in M in the same
delivery cycle.
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Figure 19: Synchronization Communication Tree

12 Comments

The algorithms described in the previous sections are all SIMD (Single
Instruction, Multiple Data) in nature. In each instruction cycle, every pro-
cessor cxccutes the same instruction. Processors behave differently when
they opcrate on different data. We chose to design our algorithm using the
SIMD paradigm only because it is conceptually sitnpler than the MIMD
(Multiple Instruction, Multiple Data) paradigm. We do not mean to im-
ply that parallel algorithms should, in gencral, use the SIMD paradigm.
Similarly, we chose a very simple message passing protocol. The only in-
teraction hetween a sending processor and a recciving processor is a final
acknowledgement. More complicated mechanisms can be realized with cs-
sentially the same hardware. For example, instead of passing a message to
the recciving processor, the sending processor might send a request to read
sonte portion of the receiving processor’s memory. The recciving processor
would then reply with that data instead of sending a simple acknowledjge-
ment. There may be profound reasons for choosing the SIMD or the MIMD
paradigm, or for using some particular message sending protocol, but we
have not dealt with these issues in this paper.

In this paper we have examined a technigue for keeping communication
costs down throughout a parallel algorithm. Our technique is to construct
“communication trces” from cycles of processors. If we think of each cycle of
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processors as a set of processors, then we can imagine using communication
trees to implement a variety of basic set operations. Our current algorithms
for even such simple operations as computing the union of two sets are very
expensive. We must discard the communication tree of each set and build
a completely new communication tree. We expect that future research will
explore such problems as merging two communication trees directly, and
computing the most efficient communication tree for a set of processors.

Finally, the message set routing results of Leiserson and Greenberg [L,
LG] show that no matter how large the load factor of a message set, we can,
for a given amount of hardware, deliver it in almost optimal time. Thus if
a problem takes a long time to run on a fat-tree, then it will take a long
time to run on any architecture. These observations lead to the somewhat
obvious conclusion that we should examine those problems for which we
only need to generate message sets with small load factors.
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